

National Weather Service Alaska-Pacific River Forecast Center http://aprfc.arh.noaa.gov

Glacier-Dammed Lakes in the Kenai River Basin

Definitions

- A glacier-dammed lake is a substantial body of standing water located in, on, under, or at the margin of a glacier such that its existence is in some way dependent on damming by glacier ice
- Glacier-dammed lakes are locally referred to as potholes
- The rise in water level in streams down valley due to the draining of a glacier-dammed lake is often referred to by the Icelandic term "jokulhlaup"

Types of Glacier-Dammed Lakes 750 Lakes Mapped in Alaska in 1971

ROAR

Cycle of Glacier Dammed Lake Releases

- Lake filling
- Release trigger
- Partial release possible
- Tunnel or channel growth
- Lake draining until empty
- Tunnel closure

Note that the glacier dam does not suddenly break apart

Release Triggers (Pulling the Plug!)

List of mechanisms by Post and Mayo (1971)

- Raising of the ice dam by floating
- Water overflowing the dam along margin
- Slow plastic yielding of the ice
- Progression of cracks in the glacial ice
- Drainage through small preexisting channels
- Weakening of the dam by earthquakes
- Sub-glacial melting by volcanic heat
- Combination of triggers

Lake George - Lateral Release

Similar configuration has caused Hubbard Glacier to block Russell Fjord near Yakutat

Tunnel Growth and Closure

- After the leak is established, the outflow tunnel or channel enlarges rapidly by melting
- Size of tunnel or channel is related to the volume of water that has already passed through it
- The lake level decreases to a point where the outlet stops growing, but the plastic flow of the glacial ice is too slow to close the outlet before the lake empties
- When lake has emptied, tunnel or channel will slowly close due to plastic flow of the glacial ice

Jokulhlaup Hydrograph

Hypothetical Hydrograph Shapes

Rainfall and Jokulhlaup

River Routing Concept

Avg Inflow - Avg Outflow = dS/dt

Kenai River Rain Event Routing

Snow Glacier-Dammed Lake

Snow Glacier-Dammed Lake

- •Snow glacier dammed lake volume is 100,000 150,000 acre-ft
- Equivalent to 15-22 inches of rain over entire Snow River basin
- •Maximum depth 300-400 feet
- •Takes 1-2 weeks to drain
- Causes 3-5 foot rise on Kenai Lake

Glacier-Dammed Lake Monitoring

Conduct aerial overflights to monitor lake levels... more frequent monitoring when lake level approached spill levels

Snow Glacier Dammed Lake Schematic

Kenai glacial lake ready to unleash billions of gallons

Jokulhlaup (pronounced yokel-lop) is an Icelandic term describing sudden water releases from glaciers or glacier-dammed lakes. They occur on glaciers around the world and vary immensely in size. There are about 750 glacier-dammed lakes that can generate jokulhaups flowing into streams around Alaska. Jokulhlaups recur at intervals ranging from several months to several years.

Jokulhlaup Model

Developed by David Chapman in the 80's

Forecast Process

Slope of line determines Jokulhlaup shape... it is tuned daily based on additional data

1996 Forecast

Forecast Process

Model output determines Jokulhlaup shape... allowing NWS to forecast hydrograph

Snow GDL Release Timing

Releases between 1911 and 1949 were often in November, December, or January

Glacier Dammed Lake Release Timing

Mean daily flow statistics for the Kenai River at Soldotna based on 41 years

Triggering Lake Level

Impact of Jokulhlaup

Kenai Lake attenuates peak - most flood impacts are due to high Kenai Lake levels

Peak Flow at Cooper Landing

Snow Glacier Dammed Lake 2007

CAP photo on 11/5/07

Snow Glacier Dammed Lake 2007

Glacier Dammed Lake Release Timing

Mean daily flow statistics and 2007 data for the Kenai River at Soldotna

Skilak Glacier Dammed Lake

- •Skilak glacier dammed lake volume is roughly 50,000 150,000 acre-ft
- Equivalent to 5-15 inches of rain over the entire Skilak River basin
- Lake takes 5-12 days to drain
- •Causes 1-4 ft rise on lower river in open water conditions

NOAR

Skilak Jokulhlaup History

Not as well documented as the Snow GDL

Known Release History

January 1969* September 1971 August 1974 September 1977 Late 1979 November 1985 November 1990 January 1994 October 1995 October 1997 November 1999 November 2002 October 2004 January 2007*

^{*}Events that caused ice jam flooding

Skilak Release in January 2007

- release began on January16th
- crested on 27th after 3.8 ft rise at Skilak Lake
- occurred when lower Kenai River had ice cover
- caused ice jam flooding from river mile 32 to below Big Eddy
- the river stage at Soldotna reached 20.00 ft, 1/28/07 when a jam formed 1/2 mile downstream of the Sterling Hwy bridge

Ice Breakup Jam Flooding

- •The presence of ice slows the current
- •Slower current requires more area for constant flow
- •A backwater results up river from the ice cover
- •Normally ice cover develops when flow is decreasing

Ice Breakup Jam Flooding

- When flow increases during a glacier dammed lake release, ice will lift and break up
- •An ice run develops and moves down river
- •When it runs into an ice cover down river, it could stop and jam, thickening the ice
- •The ice cover is rougher and thicker, causing more backwater up river
- •Further flooding likely due to increasing flow

Freeze-up Frazil Ice Jams

River Mile 28 River Mile 15

Thank You... Any Questions?

